Homework 3

BQOM 2521- Decision Making in a Complex Environment

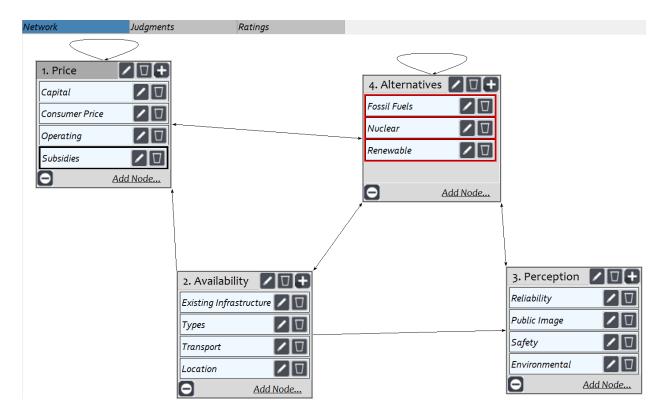
Joseph M. Katz Graduate School of Business

Dylan Rohar

Table of Contents

1	Introduction	1
2	Network	2
3	Judgements	3
4	Final Results and Saaty Compatibility Index	4

1 Introduction

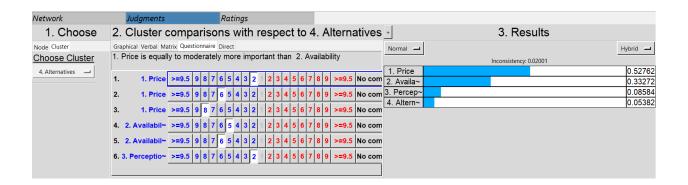

In order select an industry to evaluate the market share, it was important to choose something that I have personal knowledge of and therefore will not need to look up large amounts of data to make decisions. I decided to use the SuperDecisions to estimate the makeup of the energy source industry in the United States. There are obviously many different energy sources utilized in the United States, but they are often broken down into three main categories:

- Fossil Fuels
- Nuclear
- Renewable

I chose this topic, because I have an undergrad in mining engineering and I worked for three years in the coal industry and one year in the nuclear industry prior to attending Katz. This gives me a reasonable amount of knowledge to properly estimate the makeup of these energy sources in the US using the software

2 Network

The complete network completed in the SuperDecisions software is displayed in the following screen shot:



The network mostly speaks for itself, but as a summary I chose three different clusters that I thought properly represented what determines what energy is utilized in the US. There is one additional connection I made, in that consumer price is correlated to capital and operating costs.

3 Judgements

Since there are an excessive amount of judgements to be made, the only screenshot that will be shown is the comparison of clusters with respect to alternatives since these have a massive impact on the weighting of the clusters. Price and Availability have the largest impact on the energy makeup of the United States, whereas the role of perception is growing larger, it still does not have the effect that the economies of scale have to bring price down and the availability of resources throughout the country can.

Further judgements can be seen in the model itself and through the discussion in the conclusion regarding the results.

4 Final Results and Saaty Compatibility Index

As a check before retrieving results, I completed a Sanity Check within the software to ensure that I was not missing any judgements. The results of the model are shown below, as well as the actual makeup of the energy industry in the US based on Billion kWh according to eia.gov.

Name	Graphic	Ideals	Normals	Raw
Fossil Fuels		1.000000	0.487393	0.201031
Nuclear		0.481850	0.234850	0.096867
Renewable		0.569885	0.277758	0.114565

Energy source	Billion kWh	Share of total
Total - all sources	4,015	
Fossil fuels (total)	2,495	62.7%
Natural gas	1,273	31.7%
Coal	1,208	30.1%
Petroleum (total)	21	0.5%
Petroleum liquids	13	0.3%
Petroleum coke	9	0.2%
Other gases	14	0.4%
Nuclear	805	20.0%
Renewables (total)	687	17.1%
Hydropower	300	7.5%
Wind	254	6.3%
Biomass (total)	64	1.6%
Wood	43	1.1%
Landfill gas	11	0.3%
Municipal solid waste (biogenic)	7	0.2%
Other biomass waste	3	0.1%
Solar (total)	53	1.3%
Photovoltaic	50	1.2%
Solar thermal	3	0.1%
Geothermal	16	0.4%
Pumped storage hydropower ³	-6	-0.2%
Other sources	13	0.3%

These values were put into the Saaty Compatibility Index to determine just how well my model was compared to the actual results.

62.7							
20		copy to t	his column the initi	al actual values			
17.1							
17.1							
Normalized Act	ual values						
0.62826		to normaliz	e the values we su	ım them and then			
0.20040		divide (divide each value by the sum we found				
0.17134							
Results from S	uperDecisions	S					
Name	Ideats	Normals	Raw				
Fossil Fuels	ideais 1	0.487393		copy here	the results	from Supe	<mark>rDecisior</mark>
Nuclear	0.48185	/	<i></i>				
Renewable	0.569885	,	0.114565				
i toi ic wabie	4//// //9/9999999 9	, 0.211130	////// <i>///////////////////////////////</i>				
Pairwise Comp	arison Matrix	from Actual D	ata				
	Fossil Fuels	Nuclear	Renewable				
Fossil Fuels	1	3.13500	3.66667		A1/A1	A1/A2	A1/A3
Nuclear	0.31898	1	1.16959		A2/A1	A2/A2	A2/A3
Renewable	0.27273	0.85500	1		A3/A1	A3/A2	A3/A3
Transpose of C	omparison M	atrix from Est	mated Data				
	Fossil Fuels	Nuclear	Renewable				
Fossil Fuels	1	0.48185	0.56989		A1/A1	A2/A1	A3/A1
Nuclear	2.07534	1	1.18270		A1/A2	A2/A2	A3/A2
Renewable	1.75474	0.84552	1		A1/A3	A2/A3	A3/A3
Result of Hadaı	mard (Cell-wis	se) Multiplicati	on of Previous Tw	o Matrices			
	Fossil Fuels	Nuclear	Renewable				
Fossil Fuels	1	1.510597711	2.08958				
Nuclear	0.66199		1.38328				
Renewable	0.47857		1				
Cell sum of pre	vious matrix		9.846930479				
Number of Alternatives			3				
		Sum/n**2	1.094103387				

It is now important to interpret the results and speculate what caused them to be the way that they are. It is evident that the model worked in showing that fossil fuels is the most widely used energy source in the US. This is due to multiple factors that were included within the model. For instance, fossil fuels have been a staple of US energy for over 100 years. Costs are relatively low and it has been used for so long, that is available practically everywhere. Now what the model did not compute correctly is just how dominate fossil fuels are (62.8% versus 48.7% in model). It is my estimation that the factors of price and availability were not weighted high enough. When energy is typically talked about in the media, price and availability is typically not mentioned, but the environmental effects and perception tend to be highlighted. Although this is something that is fairly important to the general population, something as large as the energy usage in the United States takes an awful long time to see change and the push for renewable energy sources is a fairly new issue. In addition, most people do not have the option of where their energy comes from, it is simply provided to them by their utility. The coverage of perception in the media most likely caused me to over-value it in the model compared to what actually makes the decisions in the real-world.

In addition to undervaluing fossil fuels, I also had Nuclear and Renewable flipped in the order of magnitude. I believe a similar phenomenon happened here in that there have been some recent events that have tarnished the reputation of the nuclear industry. I must have factored these into my decision making, but in reality, these factors do not have that large of an effect in the short term for the reasons mentioned in the above paragraph.

Overall, I am fairly happy with the model as I have created it. I was able to use my knowledge of the energy industry to fairly accurately predict the market share of the US energy industry. The Saaty Compatibility index for the model is 1.09. The goal number for this index is 1, so my result seems to match my idea that my model did an acceptable job of estimating.